

64K-Word By 16 bit

CS16LV11245

		Cover	• Sheet and Revision Status	
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明 (Change Description)	發行人 (Originator)
1.0	20170009	Jun 08, 2017		
(Rev.) 1.0 2.0	20170009 20200019	(Eff. Date) Jun 08, 2017 Dec. 29, 2020	(Change Description) New issue Revise ICC (operating current) 45ns- 20mA, 55ns- 20mA, 70ns- 15mA	(Originator) Hank Lin Hank Lin

Chiplus reserves the right to change product or specification without notice.

i

64K-Word By 16 bit

CS16LV11245

64K-Word By 16 bit

CS16LV11245

GENERAL DESCRIPTION

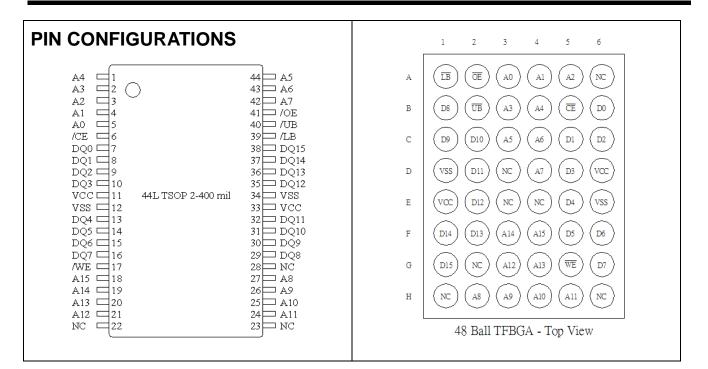
The CS16LV11245 is a high performance; high speed and super low power CMOS Static Random Access Memory organized as 65,536 words by 16bits and operates from a wide range of 4.5 to 5.5V supply voltage. Advanced CMOS technology and circuit techniques provide both high speed, super low power features and maximum access time of 55/70ns in 5.0V operation. Easy memory expansion is provided by an active LOW chip enable input (/CE) and active LOW output enable (/OE).

The CS16LV11245 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS16LV11245 is available in JEDEC standard 44-pin TSOP 2-400mil, 48-ball TFBGA 6*8mm.

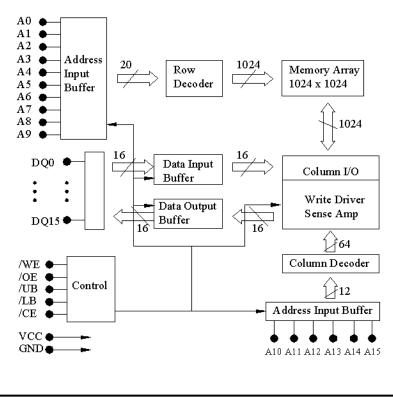
FEATURES

- Wide operation voltage : 4.5 ~ 5.5V
- Ultra-low power consumption :
 - operating current: 20mA (Max.) @t_{AA}=45ns
 - standby current : 2uA (Typ.)
- High speed access time: 45/55/70ns.
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible.
- Data retention supply voltage as low as 1.5V.

Product Family


Product Family	Operating Temp	Vcc. Range	Speed (ns)	Standby (Max)	Package Type
CS16LV11245	0~70°C	4.5~5.5	45/55/70	8 uA	44L TSOP 2-400mil
C310LV11243	-40~85°C	4.5~5.5	45/55/70	(Vcc = 5.5V)	48ball TFBGA 6*8mm

Rev. 2.0



64K-Word By 16 bit

CS16LV11245

FUNCTIONAL BLOCK DIAGRAM

2

64K-Word By 16 bit

CS16LV11245

PIN DESCRIPTIONS

Name	Туре	Function
A0 – A15	Input	Address inputs for selecting one of the 65,536 x 16 bit words in the RAM
/CE	Input	/CE is active LOW. Chip enable must be active when data read from or write to the device. If chip enable is not active, the device is deselected and in a standby power mode. The DQ pins will be in high impedance state when the device is deselected.
/WE	Input	The Write enable input is active LOW. It controls read and write operations. With the chip selected, when /WE is HIGH and /OE is LOW, output data will be present on the DQ pins, when /WE is LOW, the data present on the DQ pins will be written into the selected memory location.
/OE	Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when /OE is inactive.
/LB and /UB	Input	Lower byte and upper byte data input/output control pins.
DQ0~DQ15	I/O	These 16 bi-directional ports are used to read data from or write data into the RAM.
Vcc	Power	Power Supply
Gnd	Power	Ground

64K-Word By 16 bit

CS16LV11245

TRUTH TABLE

MODE	/CE	/WE	/OE	/LB	/UB	DQ0~7	DQ8~15	V _{CC} Current			
Standby	Х	Х	Х	К	H High Z	High Z	High Z	I _{CCSB} , I _{CCSB1}			
Standby	Н	Х	Х	Х	Х	T light Z	T light Z	ICCSB, ICCSB1			
Output Disabled	L	Н	Н	Х	Х	High Z	High Z	lcc			
				L	L	D _{OUT}	D _{OUT}	lcc			
Read	L	н	L	Н	L	High Z	D _{OUT}	I _{cc}			
				L	Н	D _{OUT}	High Z	lcc			
				L	L	D _{IN}	D _{IN}	I _{cc}			
Write	L	L	Х	Н	L	Х	D _{IN}	I _{cc}			
							L	Н	D _{IN}	Х	lcc

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TBIAS	Temperature under Bias	-40 to +125	OC
TSTG	Storage Temperature	-60 to +150	OC
PT	Power Dissipation	1.0	W

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc		
Commercial	0~70°C	4.5V ~5.5V		
Industrial	-40~85°C	4.5V ~ 5.5V		

4

64K-Word By 16 bit

CS16LV11245

CAPACITANCE ⁽¹⁾ (T_A = 25oC, f =1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{DQ}	Input/output Capacitance	V _{I/O} =0V	8	pF

This parameter is guaranteed, and not 100% tested.

DC ELECTRICAL CHARACTERISTICS (T_A = 0 $^\circ C$ ~70 $^\circ C$, V_cc = 5.0V)

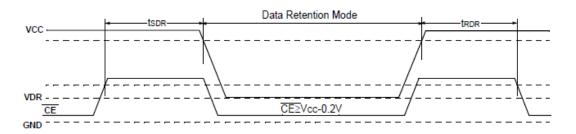
Nam e	Parameter	Test Condition		MIN	(1)	MAX	Unit
VIL	Guaranteed Input Low Voltage ⁽³⁾	V _{CC} =3.0V				0.8	V
Vih	Guaranteed Input High Voltage ⁽²⁾	V _{CC} =3.0V				Vcc+ 0.5	V
I _{IL}	Input Leakage Current	V_{CC} =MAX, V_{IN} =0 to V_{CC}				1	uA
I _{OL}	Output Leakage Current	V_{CC} =MAX, /CE=V _{Ih} , or /OE=V _{Ih} , or /WE= V _{IL} V _{IO} =0V to V _{CC}		-1		1	uA
Vol	Output Low Voltage	V _{CC} =MAX, I _{OL} =2.1mA				0.4	V
V _{OH}	Output High Voltage	V_{CC} =MIN, I_{OH} = -1.0mA		2.4			V
	Operating Power	/CE=V _{IL} , I _{DQ} =0mA,	/CE=V _{IL} , I _{DQ} =0mA,			20	
Icc	Supply Current	F=F _{MAX} =1/ t _{RC} 55ns 70ns				20 15	mA
I _{CCSB}	TTL Standby Supply	/CE=V _{IH} , I _{DQ} =0mA,				0.3	mA
I _{CCSB1}	CMOS Standby Current	/CE \geq V _{CC} -0.2V, V _{IN} \geq V _{CC} -0.2V or V _{IN} \leq 0.2V,			2	8	uA

1. Typical characteristics are measured at Vcc=5V, T_A =25°C and not 100% tested

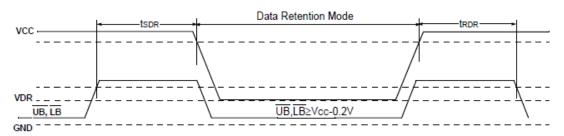
2. Overshoot : VCC +2.0V in case of pulse width \leq 20ns.

3. Undershoot : - 2.0V in case of pulse width *≦*20ns.

4. Overshoot and undershoot are sampled, not 100% tested.


64K-Word By 16 bit

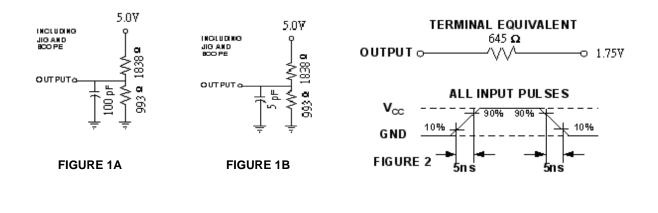
CS16LV11245


DATA RETENTION CHARACTERISTICS (T_A = 0° C) ~70°C)

Name	Parameter	Test Condition		TYP	MAX	Unit
V _{DR}	V _{CC} for Data Retention	$/CE \ge V_{CC}$ -0.2V, $V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$	1.5			V
Iccdr	Data Retention Current	/CE≧Vcc-0.2V, Vcc =1.5V VıN≧Vcc-0.2V or VıN≦0.2V		2	6	uA
Tcdr	Chip Deselect to Data Retention Time	Refer to Retention Waveform	0			ns
t _R	Operation Recovery Time		t _{RC}			ns

LOW V_{CC} DATA RETENTION WAVEFORM (1) (/CE Controlled)

64K-Word By 16 bit


CS16LV11245

Rev. 2.0

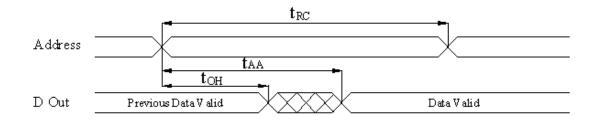
AC TEST CONDITIONS

Input Pulse Levels	Vcc/0V	WAVEFORMS	INPUTS	OUTPUTS
Input Rise and Fall	3ns		MUST BE STEADY	MUST BE STEADY
Times	5115		MOST DE STEADT	MOST DE STEADT
Input and Output				
Timing Reference	0.5Vcc		MAY CHANGE	WILL BE CHANGE FROM H
Level			FROM H TO L	TO L
Output Load	See FIGURE			
	1A and 1B			
			MAY CHANGE	WILL BE CHANGE FROM L
			FROM L TO H	то н
			DON'T CARE ANY	
		\times	CHANGE	CHANGE STATE UNKNOWN
			PERMITTED	
			DOES NOT APPLY	CENTER LINE IS HIGH
			DOES NOT APPLY	IMPEDANCE OFF STATE

AC TEST LOADS AND WAVEFORMS

64K-Word By 16 bit

CS16LV11245


AC ELECTRICAL CHARACTERISTICS (T_A = 0°C ~70°C ; V_{cc}=5.0V)

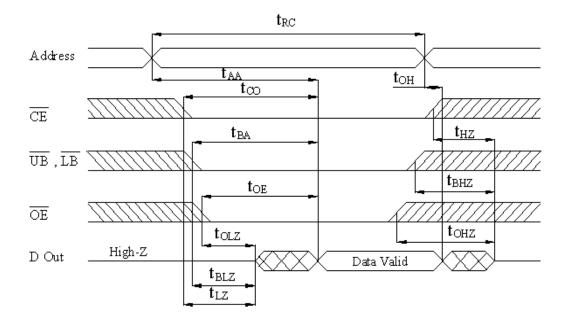
Parameter	Description	-45		-55		-70		Unit
Name	Description	MIN.	MAX	MIN.	MAX	MIN.	MAX	Offic
t _{RC}	Read Cycle Time	45		55		70		ns
taa	Address Access Time		45		55		70	ns
tacs	Chip Select Access Time (/CE)		45		55		70	ns
tва	Data Byte Control Access Time (/LB, /UB)		45		55		70	ns
t _{OE}	Output Enable to Output Valid		22		25		35	ns
tc∟z	Chip Select to Output Low Z (/CE)	10		10		10		ns
tве	Data Byte Control to Output Low Z (/LB, /UB)	5		5		5		ns
tolz	Output Enable to Output in Low Z	5		5		5		ns
tснz	Chip Deselect to Output in High Z (/CE)	0	18	0	20	0	25	ns
t _{BDO}	Data Byte Control to Output High Z (/LB, /UB)		18	0	20	0	25	ns
tонz	Output Disable to Output in High Z		18	0	20	0	25	ns
tон	Out Disable to Address Change	10		10		10		ns

READ CYCLE

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE1

8



64K-Word By 16 bit

CS16LV11245

Rev. 2.0

READ CYCLE2

NOTES:

- 1. t_{HZ} and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{HZ}(Max.) is less than t_{LZ}(Min.) both for a given device and from device to device interconnection.

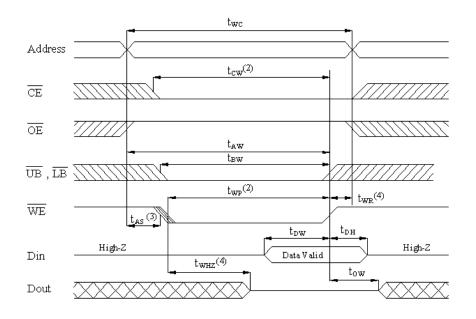
64K-Word By 16 bit

CS16LV11245

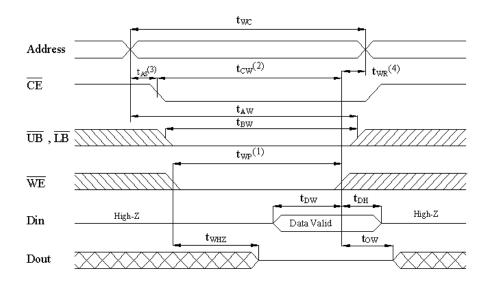
AC ELECTRICAL CHARACTERISTICS (T_A = 0° C \sim 70 $^{\circ}$ C ; V_{cc}=5.0V)

JEDEC	Parameter	Description	-4	45	-5	55	-70		Unit
Parameter Name	Name	Description	MIN	МАХ	MIN	МАХ	MIN	МАХ	
tavax	twc	Write Cycle Time	45	-	55	-	70	-	ns
te1LWH	tcw	Chip Select to End of Write	35	-	45	-	60	-	ns
t avwl	tas	Address Setup Time	0	-	0	-	0	-	ns
tavwh	taw	Address Valid to End of Write	35	-	45	-	60	-	ns
twlwh	t _{WP}	Write Pulse Width	35	-	40	-	55	-	ns
twнаx	twr1	Write Recovery Time (/CE, /WE)	0	-	0	-	0	-	ns
tвw	tвw	Data Byte Control to End of Write (/LB, /UB)	35	-	45	-	60	-	ns
twlqz	twнz	Write to Output in High Z	-	18	-	20	I	25	ns
to∨wн	tow	Data to Write Time Overlap	25	-	25	-	30	-	ns
twhdx	tdн	Data Hold from Write Time	0	-	0	-	0	-	ns
t _{wнox}	tow	End of Write to Output Active	5	-	5	-	5	-	ns

WRITE CYCLE

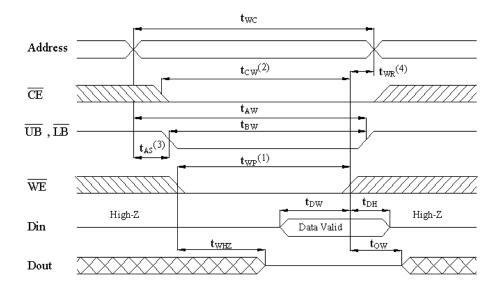


64K-Word By 16 bit


CS16LV11245

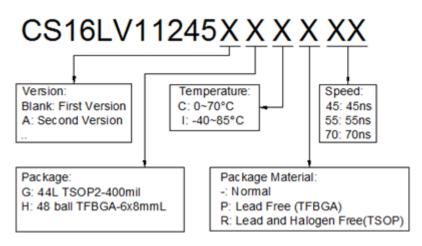
SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE1 (/WE CONTROLLED)


WRITE CYCLE2 (/CE CONTROLLED)

64K-Word By 16 bit

CS16LV11245



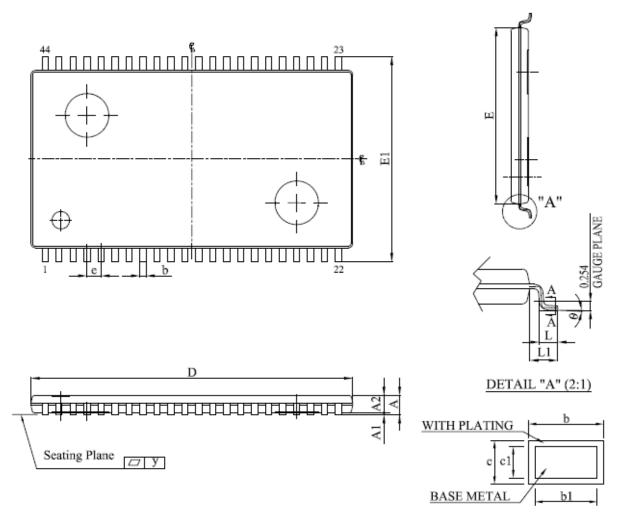
WRITE CYCLE3 (/UB, /LB CONTROLLED)

NOTES:

- A write occurs during the overlap (t_{WP}) of low /CE and low /WE. A write begins when /CE goes low and /WE goes low with asserting /UB and /LB for double byte operation. A write ends at the earliest transition when /CE goes high and /WE goes high. The tWP is measured from the beginning of the write to the end of write.
- 2. t_{CW} is measured from the /CE going low to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. TWR applied in case a write ends as /CE or /WE going high.

ORDER INFORMATION

Note: Package material code "R" meets ROHS



64K-Word By 16 bit

CS16LV11245

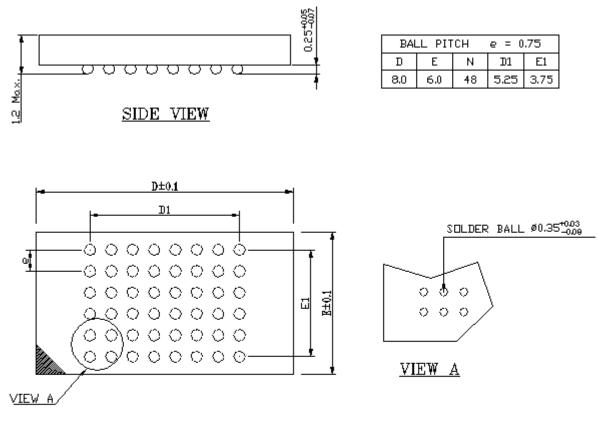
PACKAGE OUTLINE

44L TSOP2-400mil

SECTION A-A

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

UNIT	MBOL	Α	A1	A2	b	b1	с	c1	D	Е	E1	е	L	L1	у	Θ
mm	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	Ι	0°
	Nom.	1.10	0.10	1.00	-	-	-	-	18.41	10.16	11.76	0.80	0.50	0.80	-	-
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	Ι	0°
inch	Nom.	0.0433	0.004	0.039	_	-	_	_	0.725	0.400	0.463	0.0315	0.0197	0.0315	-	-
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°


13

64K-Word By 16 bit

CS16LV11245

48 ball TFBGA-6x8mm

TOP VIEW

NOTES

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL 'N' IS THE NUMBER OF SOLDER BALLS.