

256k Word x 16 bit

CS16LV41963

	Cover Sheet and Revision Status								
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明(Change Description)	發行人 (Originator)					
1.0	_	Jul. 12, 2016	New issue	Hank Lin					
2.0	20200019	Dec. 29, 2020	Revise ICC (operating current)	Hank Lin					
2.0	20200019	Dec. 29, 2020	Revise ICC (operating current) 45ns- 20mA, 55ns- 20mA, 70ns- 15mA	Hank Lin					

256k Word x 16 bit

CS16LV41963

GENERAL DESCRIPTION	1
FEATURES	1
Product Family	1
PIN CONFIGURATIONS	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	3
TRUTH TABLE	4
ABSOLUTE MAXIMUM RATINGS ⁽¹⁾	4
DC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 3.0V$)	5
OPERATING RANGE	6
DATA RETENTION CHARACTERISTICS ($T_A = 0^{\circ}C$ to + 70°C)	6
CAPACITANCE ⁽¹⁾ (T _A = 25°C, f =1.0 MHz)	7
AC TEST CONDITIONS	
KEY TO SWITCHING WAVEFORMS	7
AC TEST LOADS AND WAVEFORMS	8
AC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to + 70°C, $V_{CC} = 3.0V$)	8
SWITCHING WAVEFORMS (READ CYCLE)	9
AC ELECTRICAL CHARACTERISTICS ($T_A = 0$ °Cto + 70°C, $V_{CC} = 3.0V$)	10
ORDER INFORMATION	13
PACKAGE OUTLINE	14

CS16LV41963

GENERAL DESCRIPTION

The CS16LV41963 is a high performance, high speed, super low power CMOS Static Random Access Memory organized as 262,144 words by 16 bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 2uA and maximum access time of 45/55/70ns in 3.0V operation. Easy memory expansion is provided by an active LOW chip enable (/CE) and active LOW output enable (/OE) and three-state output drivers.

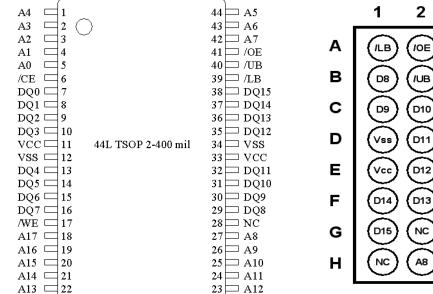
The CS16LV41963 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS16LV41963 is available in JEDEC standard 44-pin TSOP 2 and 48 ball TFBGA package.

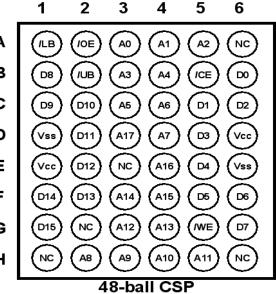
FEATURES

- Low operation voltage : 2.7 ~ 3.6V
- Ultra low power consumption :
 - operating current: 20mA (Max.) @t_{AA}=45ns
 - standby current : 2uA (Typ.)
- Fast access time: 45/55/70ns (Max.)
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible, fully static operation
- Data retention supply voltage as low as 1.5V.

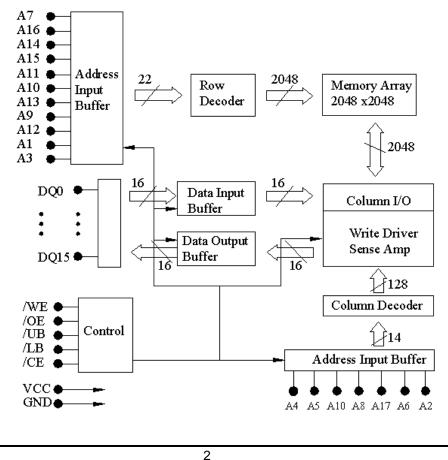
Product Family

Product Family	Operating Temp	Vcc. Range (V)	Speed (ns)	Standby (Max)	Package Type
CS16LV41963	0~70°C	2.7~3.6	45/55/70	l 8uA	44 TSOP 2-400mil 48 TFBGA_6x8mm
	-40~85°C			(Vcc = 3.6V)	Dice


1



256k Word x 16 bit


CS16LV41963

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

Rev. 2.0

Chiplus reserves the right to change product or specification without notice.

256k Word x 16 bit

CS16LV41963

PIN DESCRIPTIONS

Name	Туре	Function
A0 – A17	Input	Address inputs for selecting one of the 262,144 x 16 bit words in the
		RAM
		/CE is active LOW. Chip enable must be active when data read from
/CE	Input	or write to the device. If chip enable is not active, the device is
,0L	mput	deselected and in a standby power mode. The DQ pins will be in
		high impedance state when the device is deselected.
		The Write enable input is active LOW. It controls read and write
	Input	operations. With the chip selected, when /WE is HIGH and /OE is
/WE		LOW, output data will be present on the DQ pins, when /WE is
		LOW, the data present on the DQ pins will be written into the
		selected memory location.
		The output enable input is active LOW. If the output enable is active
/OE	Innut	while the chip is selected and the write enable is inactive, data will
/OE	Input	be present on the DQ pins and they will be enabled. The DQ pins
		will be in the high impedance state when /OE is inactive.
/LB and /UB	Input	Lower byte and upper byte data input/output control pins.
D00 D015	I/O	These 16 bi-directional ports are used to read data from or write
DQ0~DQ15	1/0	data into the RAM.
Vcc	Power	Power Supply
Gnd	Power	Ground

256k Word x 16 bit

CS16LV41963

TRUTH TABLE

MODE	/CE	/WE	/OE	/LB	/UB	DQ0~7	DQ8~15	Vcc Current
Standby	Х	Х	Х	Н	Н	High Z	High Z	
Stanuby	Н	Х	Х	Х	Х	High Z	righ Z	ICCSB, ICCSB1
Output Disabled	L	Н	Н	Х	Х	High Z	High Z	lcc
				L	L	Dout	Dout	lcc
Read	L	н	L	Н	L	High Z	Dout	lcc
				L	Н	Dout	High Z	lcc
				L	L	Din	DIN	lcc
Write	L	L	Х	Н	L	Х	Din	lcc
				L	Н	DIN	Х	lcc

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
VTERM	TerMin.al Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TBIAS	Temperature Under Bias	-40 to +125	OC
T _{STG}	Storage Temperature	-60 to +150	OC
Рт	Power Dissipation	1.0	W
Іоит	DC Output Current	30	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational

sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

256k Word x 16 bit

CS16LV41963

DC ELECTRICAL CHARACTERISTICS (T_A = 0°C to 70°C, V_{CC} = 3.0V)

Parameter Name	Parameter	Test Conduction		MIN.	TYP (1)	МАХ	Unit
VIL	Guaranteed Input Low Voltage ⁽³⁾			-0.3		0.8	V
ViH	Guaranteed Input High Voltage ⁽²⁾			2.2		Vcc+0.3	V
IIL	Input Leakage Current	V_{CC} =MAX, V_{IN} =0 to V_{CC}		-1		1	uA
IoL	Output Leakage Current	V _{CC} =MAX, /CE=V _{IN} , or /OE=V _{IN} , V _{IO} =0V to V _{CC}		-1		1	uA
Vol	Output Low Voltage	Vcc=MAX, IoL= 2mA			0.4	V	
V _{OH}	Output High Voltage	V _{CC} =MIN., I _{OH} = -1mA		2.4			V
	Operating Dower		45ns			20	
Icc	Operating Power Supply Current	$\begin{array}{c} \text{/CE=V_{IL}, I_{DQ}=0mA,} \\ \text{F=F}_{MAX}^{(2)} \end{array} \end{array} \begin{array}{c} 55ns \\ 70ns \end{array}$				20	mΑ
	Supply Cullent					15	
Іссѕв	Standby Supply - TTL	/CE=Vін, Ірд=0mA,				0.3	mA
Іссѕв1	Standby Current -CMOS	/CE≧Vcc-0.2V, VIN≧Vcc-0.2V			2	8	uA
	-010103	or V _{IN} ≦0.2V					

1. Typical characteristics are at $T_A=25^{\circ}C$

2. Overshoot : VCC +2.0V in case of pulse width ≤20ns.

3. Undershoot : - 2.0V in case of pulse width \leq 20ns.

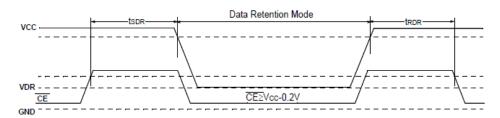
4. Overshoot and undershoot are sampled, not 100% tested.

256k Word x 16 bit

CS16LV41963

OPERATING RANGE

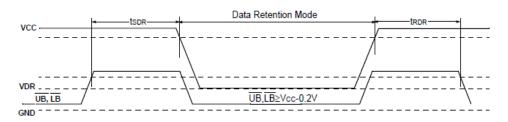
Range	Ambient Temperature	Vcc
Commercial	0~70°C	2.7V ~ 3.6V
Industrial	-40~85°C	2.7V ~ 3.6V


DATA RETENTION CHARACTERISTICS (T_A = 0°C to + 70°C)

Parameter Name	Parameter	Test Conduction	MIN.	TYP (1)	МАХ	Unit
Vdr	Vcc for Data Retention	/CE≧Vcc-0.2V, ViN≧Vcc-0.2V				V
		or Vın≦0.2V	1.5			v
	Data Retention	/CE≧Vcc-0.2V, Vcc=1.5V Vın≧		2	6	
ICCDR	Current	Vcc-0.2V or Vin≦0.2V				uA
TCDR	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time	See Retention Waveform	t _{RC} ⁽²⁾			ns

1. $V_{CC=}$ 3.0V, $T_A = +25\,^{\circ}C$

2. t_{RC} (2) = Read Cycle Time.


LOW Vcc DATA RETENTION WAVEFORM (1) (/CE Controlled)

CS16LV41963

LOW Vcc DATA RETENTION WAVEFORM (2) (/UB, /LB Controlled)

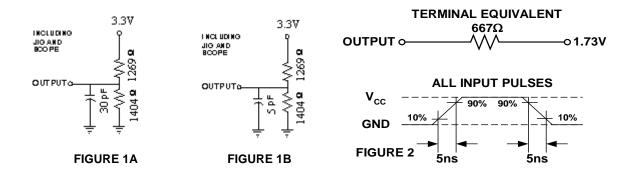
CAPACITANCE ⁽¹⁾ (T_A = 25°C, f =1.0 MHz)

Parameter	Conditions	MAX.	Unit
Input Capacitance	V _{IN} =0V	6	pF
Input/Output Capacitance	VI/O=0V	8	pF
	Input Capacitance	Input Capacitance VIN=0V	Input Capacitance VIN=0V 6

This parameter is guaranteed and not tested.

AC TEST CONDITIONS

KEY TO SWITCHING WAVEFORMS


Input Pulse Levels	Vcc/0V	WAVEFORMS	INPUTS	OUTPUTS
Input Rise and Fall Times	3ns		MUST BE STEADY	MUST BE STEADY
Input and Output TiMin.g Reference Level	0.5Vcc		MAY CHANGE FROM H TO L	WILL BE CHANGE
Output Load	See FIGURE 1A and 1B			FROM HITOL
			MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
			DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
			DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

256k Word x 16 bit

CS16LV41963

AC TEST LOADS AND WAVEFORMS

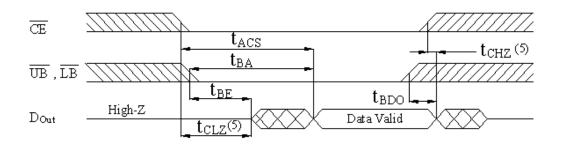
AC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to + 70°C, $V_{CC} = 3.0V$)

Parameter	Description	-4	15	-55		-70		Unit
Name	Description		MAX	MIN.	MAX	MIN.	MAX	Unit
t _{RC}	Read Cycle Time	45		55		70		ns
taa	Address Access Time		45		55		70	ns
tacs	Chip Select Access Time (/CE)		45		55		70	ns
tва	Data Byte Control Access Time (/LB, /UB)		45		55		70	ns
toe	Output Enable to Output Valid		22		25		35	ns
tc∟z	Chip Select to Output Low Z (/CE)	10		10		10		ns
TRF	Data Byte Control to Output Low Z (/LB, /UB)	5		5		5		ns
tolz	Output Enable to Output in Low Z	5		5		5		ns
tснz	Chip Deselect to Output in High Z (/CE)	0	18	0	20	0	25	ns
t _{BDO}	Data Byte Control to Output High Z (/LB, /UB)		18	0	20	0	25	ns
tонz	Output Disable to Output in High Z		18	0	20	0	25	ns
tон	Out Disable to Address Change	10		10		10		ns

< READ CYCLE >

256k Word x 16 bit

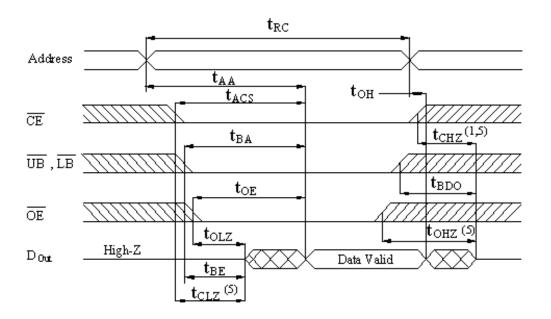
CS16LV41963


NOTES:

- 1. /WE is high in read Cycle.
- 2. Device is continuously selected when $/CE = V_{IL}$.
- 3. Address valid prior to or coincident with CE transition low.
- 4. $/OE = V_{IL}$
- 5. Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE 2. (1, 3, 4)



READ CYCLE 1. ^(1, 2, 4)

256k Word x 16 bit

CS16LV41963

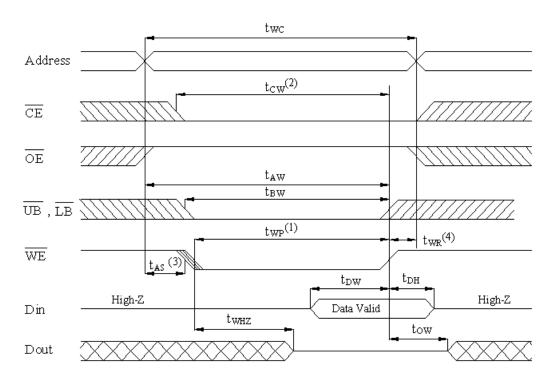
READ CYCLE 3. (1, 4)

AC ELECTRICAL CHARACTERISTICS (T_A = 0 °Cto + 70°C, V_{CC} = 3.0V)

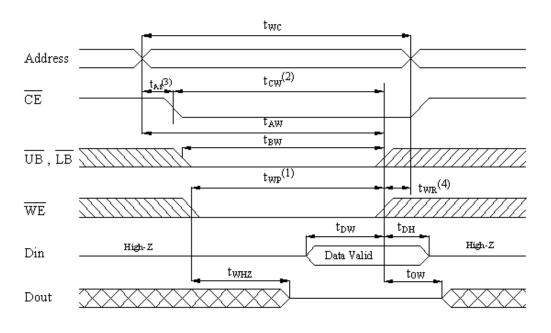
< WRITE CYCLE >

Parameter	Description	-45		-55		-70		L Init
Name	Description	MIN.	MAX	MIN.	MAX	MIN.	MAX	Unit
twc	Write Cycle Time	45		55		70		ns
tcw	Chip Select to End of Write	35		45		60		ns
tas	Address Setup Time	0		0		0		ns
taw	Address Valid to End of Write	35		45		60		ns
twp	Write Pulse Width	35		40		50		ns
twr1	Write Recovery Time (/CE, /WE)	0		0		0		ns
tBW/	Data Byte Control to End of Write(/LB, /UB)	35		45		60		ns
twнz	Write to Output in High Z		18		20		25	ns
tow	Data to Write Time Overlap	25		25		30		ns
t _{DH}	Data Hold from Write Time	0		0		0		ns
tow	End of Write to Output Active	5		5		5		ns

Rev. 2.0

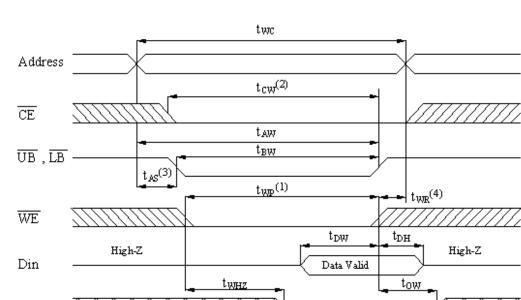


256k Word x 16 bit


CS16LV41963

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1. (/WE Controlled)



11

CS16LV41963

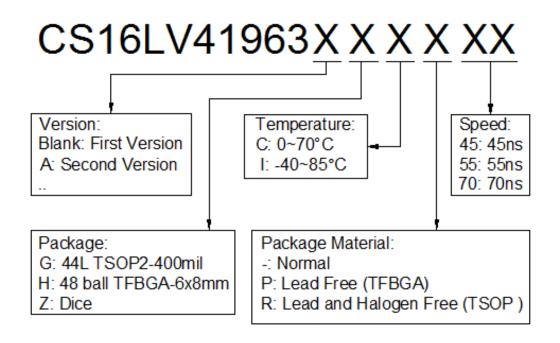
WRITE CYCLE 3. (/UB and /LB Controlled)

NOTES:

- 1. T_{AS} is measured from the address valid to the beginning of write.
- 2. The internal write time of the memory is defined by the overlap of /CE and /WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. TWR is measured from the earliest of /CE or /WE or (/UB and ,or /LB) going high at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the /CE low transition occurs simultaneously with the /WE low transitions or after the /WE transition, output remain in a high impedance state.
- 6. /OE is continuously low (/OE = VIL).

Dout

- 7. DOUT is the same phase of write data of this write cycle.
- 8. DOUT is the read data of next address.
- 9. If /CE is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.
- 11. TCW is measured from the later of /CE going low to the end of write.



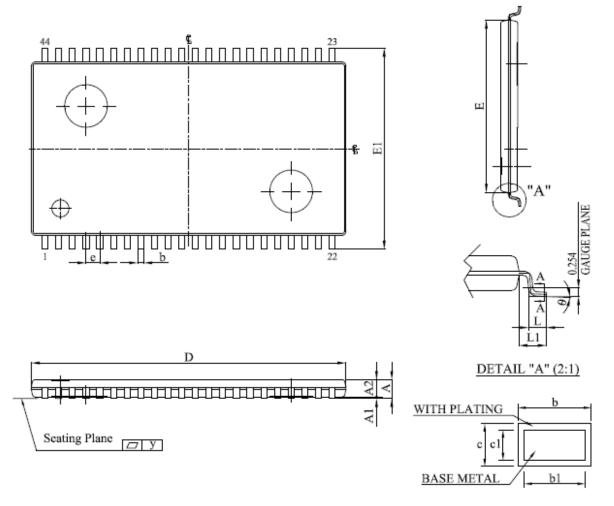
CS16LV41963

Rev. 2.0

ORDER INFORMATION

Note: Package material code "P" & "R" meets ROHS.

Chiplus reserves the right to change product or specification without notice.



CS16LV41963

PACKAGE OUTLINE

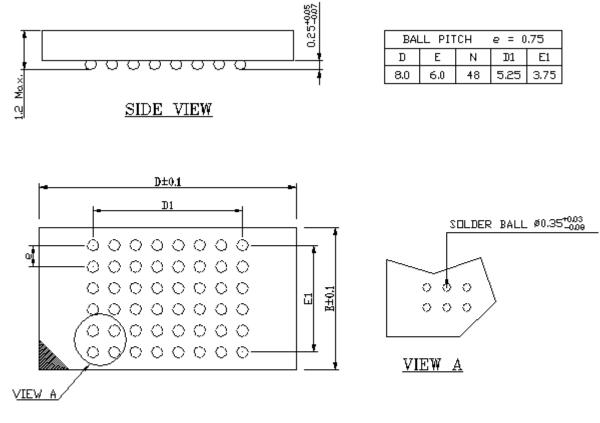
44L TSOP2-400MIL

SECTION A-A

UNIT	MBOL	А	Al	A2	b	b 1	с	c 1	D	Е	E1	с	L	Ll	у	Θ
mm	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	-	0°
	Nom.	1.10	0.10	1.00	-	Ι	-	-	18.41	10.16	11.76	0.80	0.50	0.80	-	Ι
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
inch	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	Ι	0°
	Nom.	0.0433	0.004	0.039	-	Ι	-	-	0.725	0.400	0.463	0.0315	0.0197	0.0315	Ι	Ι
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

Rev. 2.0


14

256k Word x 16 bit

CS16LV41963

48 ball TFBGA-6x8mm

TOP VIEW

NOTES

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL 'N' IS THE NUMBER OF SOLDER BALLS.