

CS16FS1024(3//W)

	Cover Sheet and Revision Status									
版別	DCC	生效日	變更說明	發行人						
(Rev.)	No	(Eff. Date)	(Change Description)	(Originator)						
1.0		Apr.15,2014	New issue	Hank Lin						
2.0		May 26, 2014	Delete 128kx8 products	Hank Lin						
3.0		_	Add 32TSOPII-400mil pin configuration and outline	Hank Lin						
4.0		·	Add part no. CS16FS10245GC(I)-12 in order information	Hank Lin						
5.0		Nov. 8, 2021	Revise "Chiplus reserves the right to change product or specification without notice" to "Chiplus reserves	Hank Lin						
			the right to change product or	Hank Lin						
			specification after approving by customer"	Hank Lin						
6.0	20240007	May. 23, 2024	Delete 5V product	Hank Lin						
7.0	20240018		Corrected the minimum value of tAS and tWR from 0ns to 1.5ns	Hank Lin						

Rev. 7.0

CS16FS1024(3//W)

GENERAL DESCRIPTION	1
FEATURES	1
Order Information	2
PIN CONFIGURATIONS	3
48ball mini-BGA	3
44TSOP2-400mil	3
Absolute Maximum Ratings*	4
Recommended DC Operating Conditions*(T _A =0 to 70°C)	4
DC and Operating Characteristics*(T _A =0 to 70°ℂ)	5
Capacitance*(T _A = 25°ℂ, f= 1.0MHz)	6
Test Conditions*	6
Functional Description (x8 Mode)	7
Functional Description (x16 Mode)	7
Data Retention Characteristics*(T _A =0 to 70°ℂ)	8
Data Retention Wave form	9
Read Cycle*	9
Write Cycle*	10
Timing Diagram	11
Timing Waveform of Read Cycle (2) ($\overline{\textit{WE}}$ =VIH)	12
Timing Waveform of Write Cycle (1) (\overline{OE} Clock)	13
Timing Waveform of Write Cycle (2) (\overline{OE} =Low fixed)	13
Timing Waveform of Write Cycle (3) (\overline{CS} =Controlled)	14
Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)	14
Package outline dimensions	15

ii

CS16FS1024(3//W)

GENERAL DESCRIPTION

The CS16FS1024(3//W)is a 1,048,576-bit high-speed Static Random Access Memory organized as 64K words by 16 bits. The CS16FS1024(3//W)uses 16 common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS1024(3//W)allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS1024(3//W)is packaged in a 400mil 44-pin TSOP2 and 48FBGA.

FEATURES

- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation

Standby (TTL): 10mA (Max.)

(CMOS): 6mA (Max.)

Operating: 35mA (8ns, Max..)

: 30mA(10ns ,Max.)

- Single 3.3±0.3V Power Supply
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)

 \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅

- Standard 48FBGA and 44TSOP2 Package Pin Configuration for 64K x 16
- Operating in Commercial and Industrial Temperature range

Rev. 7.0

1

CS16FS1024(3//W)

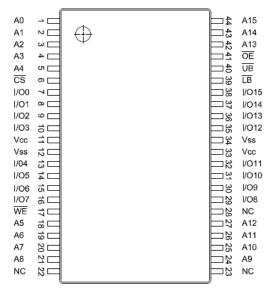
Order Information

Danaitu	0	Dout Number	V 00	Spe	eed	Dealtage	Toman
Density Org.	Part Number	V _{CC} (V)	t _{AA} (ns)	t _{OE} (ns)	Package	Temp.	
		CS16FS10243GC(I)-08	3.3	8	4	44 TSOP2	
		CC46EC4024\MCC(I)	3.3	8	4	44 TSOP2	
		CS16FS1024WGC(I)- 08*	2.5	10	5	44 TSOP2	
		00	1.8	12	6	44 TSOP2	
		CS16FS10243HC(I)-08	3.3	8	4	48 FBGA	
		CC16FC1024\M/LIC/I\	3.3	8	4	48 FBGA	
		CS16FS1024WHC(I)- 08*	2.5	10	5	48 FBGA	
1116	C 41/2-4 C	00	1.8	12	6	48 FBGA	C: Commercial
1Mb	64Kx16	CS16FS10243GC(I)-10	3.3	10	5	44 TSOP2	l : Industrial
		CC46FC4024\MCC(I)	3.3	10	5	44 TSOP2	
		CS16FS1024WGC(I)- 10*	2.5	10	5	44 TSOP2	
		10	1.8	15	7	44 TSOP2	
		CS16FS10243HC(I)-10	3.3	10	5	48 FBGA	
		CC16FC1024\W(LIC/!)	3.3	10	5	48 FBGA	
		CS16FS1024WHC(I)- 10*	2.5	10	5	48 FBGA	
		10	1.8	15	7	48 FBGA	

^{*}means max. speed

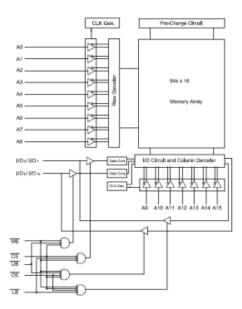
2 Rev. 7.0

CS16FS1024(3//W)


PIN CONFIGURATIONS

48ball mini-BGA

	1	2	3	4	5	6
Α	ГВ	OE	Α0	A1	A2	NC
В	108	UB	A3	A4	CS	100
С	109	IO10	A5	A6	IO1	102
D	Vss	IO11	NC	A7	IO3	Vcc
Е	Vcc	IO12	NC	NC	104	Vss
F	IO14	IO13	A14	A15	105	106
G	IO15	NC	A12	A13	WE	107
Н	NC	A8	A9	A10	A11	NC


CS16FS1024(3//W)- (64k x 16)

44TSOP2-400mil

CS16FS1024(3/5/W)-(64k x 16)

FUNCTIONAL BLOCK DIAGRAM

3 Rev. 7.0

CS16FS1024(3//W)

Absolute Maximum Ratings*

Paramo	eter	Symbol	Rating	Unit
Voltage on Any Pin	3.3V Product			
Relative to Vss	Wide Vcc**	V_{in},V_{OUT}	-0.5 to V _{CC} +0.5V	V
Troiding to 100	Product			
Voltage on Vcc Supply	3.3V Product	Via Volit	-0.5 to 4.0	V
Relative to Vss	Wide Vcc** Product	V _{in} , V _{OUT}		V
Power Dissipation		PD	1.0	W
Storage Temperature		T _{STG}	-65 to 150	°C
Operating Temperature	Commercial	TA	0 to 70	°C
Industrial		TA	-40 to 85	°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions*(T_A=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit
	3.3	Vcc	3.0	3.3	3.6	
Supply Voltage	Wide 2.4~3.6	Vcc	2.4	2.5/3.3	3.6	V
	Wide 1.65~2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	V
	3.3	V _{IH}	2.0	-	V _{CC} +0.5	
Input High Voltage	Wide 2.4~3.6	ViH	2.0	-	Vcc+0.3	
	Wide 1.65~2.2	V _{IH}	1.4	-	V _{CC} +0.2	
	3.3	VIL	-0.3	-	0.8	
Input Low Voltage	Wide 2.4~3.6	VIL	-0.3	-	0.7	V
	Wide 1.65~2.2	VIL	-0.2	-	0.4	

^{*}The above parameters are also guaranteed for industrial temperature range.

Rev. 7.0

Chiplus reserves the right to change product or specification after approving by customer.

4

^{**}Wide VCC Range is 1.65V~3.6V

CS16FS1024(3//W)

DC and Operating Characteristics*(T_A=0 to 70°C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	lu	V _{IN} =V _{SS} to V _{CC}	-2	2	uA	
Output Leakage Current**	llo	\overline{CS} =V _{IH} or \overline{OE} =V _{IH} or \overline{WE} =V _{IL} V _{OUT} =V _{SS} to V _{CC}		-2	2	uA
Operating Current**	Icc	Min.Cycle,100% Duty \overline{CS} =V _{IL} , V _{IN} =V _{IH} or V _{IL} ,I _{OUT} = 0mA	8ns 10ns 12ns 15ns	-	32 30 28 25	mA
Standby	IsB	Min. Cycle, $\overline{\mathit{CS}}$ =V _{IH}			15	
Standby Current	I _{SB1}	f=0MHz, $\overline{CS} \ge V_{CC}$ -0.2V V _{IN} $\ge V_{CC}$ -0.2V or V _{in} ≤ 0.2 V	-	9	mA	
Output Low	V	V _{CC} =3.0V, I _{OL} =8mA, 3.3V Product & Wide V _{CC} ** Product			0.4	V
Voltage Level	Vol	Vcc=2.4V, IoL=1mA, Wide Vcc** Produ	Vcc=2.4V, IoL=1mA, Wide Vcc** Product			V
LCVCI		Vcc=1.65V, IoL=0.1mA, Wide Vcc** Pro	-	0.2		
Output High		V _{CC} =3.0V, I _{OH} = -4mA, 3.3V Product & V _{CC} ** Product	2.4	_		
Voltage	Vон	V _{CC} =2.4V, I _{OH} = -1mA, Wide V _{CC} ** Proc	luct	1.8	-	V
Level		Vcc=1.65V, IoH= -0.1mA, Wide Vcc** Product		1.4	-	

^{*}The above parameters are also guarantee for industrial temperature range.

5 **Rev. 7.0**

^{**}Wide V_{CC} Range is 1.65V ~ 3.6V

CS16FS1024(3//W)

Capacitance*(T_A= 25°C, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	C _{I/O}	V _{I/O} =0V	-	8	pF
Input Capacitance	Cin	V _{IN} =0V	-	6	pF

^{*}Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value
	0 to 3.0V (V _{CC} =3.3V)
Input/ Output Capacitance	0 to 2.5V (V _{CC} =2.5V)
	0 to 1.8V (V _{CC} =1.8V)
Input Rise and Fall Time	1V/1ns
Input and Output Timing Deference Levels	1.5V (Vcc=3.3V)
Input and Output Timing Reference Levels	1/2V _{CC} (V _{CC} = 1.8V or 2.5V)
Output Load	See Fig. 1

^{*}The above parameters are also guaranteed for industrial temperature range.

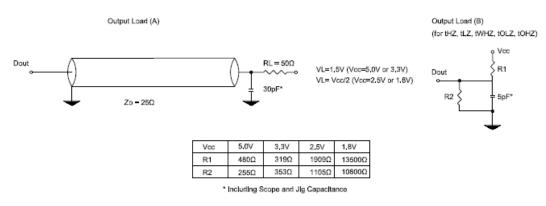
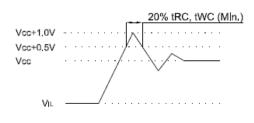


Fig 1


6 Rev. 7.0

CS16FS1024(3//W)

Overshoot Timing

Undershoot Timing

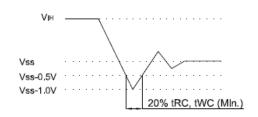


Fig 2

Functional Description (x8 Mode)

\overline{CS}	WE	ŌE	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	I _{SB} ,I _{SB1}
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	D оит	Icc
L	L	Х	Write	D _{IN}	Icc

^{*}X means don't care

Functional Description (x16 Mode)

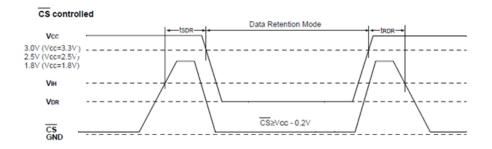
\overline{CS}	WE	OE	<i>LB</i> **	<u>UB</u> **	Mode	1/0 1	Pin	Supply
CS	// L	OL	LD	OB		I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current
Н	Χ	X*	X	X	Not Select	High-Z	High-Z	ISB, ISB1
L	Η	Η	Χ	X	Output	High 7	⊔iah 7	Icc
L	Χ	Χ	Ι	Н	Disable	High-Z	High-Z	ICC
			L	Н		D _{оит}	High-Z	
L	Н	L	Η	L	Read	High-Z	D _{оит}	Icc
			L	L		D _{OUT}	D _{OUT}	
			L	Н		Din	High-Z	
L	L	Х	Н	L	Write	High-Z	D _{IN}	Icc
			L	L		Din	Din	

7 Rev. 7.0

CS16FS1024(3//W)

*X means don't care

Data Retention Characteristics*(T_A=0 to 70℃)


Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	3.3V Product	3.3			2.0	-	3.6	
V _{CC} for Data Retention	Wide 2.4V~3.6V	2.5/3.3	V_{DR}	<u>CS</u> ≥V _{CC} - 0.2V	2.0	-	3.6	V
Retention	Wide 1.65V~2.2V	1.8			1.5	-	3.6	
	3.3V Product	3.3		$\frac{V_{CC}=2.0V}{\overline{CS}}$ ≥ V_{CC} - 0.2 V	-	-	5	
Data	Wide 2.4V~3.6V	2.5/3.3	loo	V _{IN} ≥ V _{CC} - 0.2V or V _{IN} ≤0.2V	-	-	6	mA
Retention Current	Wide 1.65V~2.2V	1.8		V_{CC} =1.5V, \overline{CS} ≥ V_{CC} - 0.2V, V_{IN} ≥ V_{CC} - 0.2V or V_{IN} ≤0.2V	-	-	6	IIIA
Data Re	Data Retention Set-Up Time		tsdR	See Data	0	-	-	nS
Recovery Time		t _{RDR}	Retention Wave form (below)	5	-	-	mS	

8 Rev. 7.0

CS16FS1024(3//W)

Data Retention Wave form

Read Cycle*

Darameter	Cumabal	8ns		10ns		12ns		15ns		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	8	ı	10	-	12	•	15	-	ns
Address Access Time	taa	•	8	•	10	•	12	ı	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	ı	15	ns
Output Enable to Valid Output	toe	-	4	-	5	-	6	1	7	ns
\overline{UB} , \overline{LB} Access Time**	t _{BA}	•	4	•	5	•	6	ı	7	ns
Chip Enable to Low-Z Output	t _{LZ}	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	0	-	ns
\overline{UB} , \overline{LB} Enable to Low-Z Output**	t _{BLZ}	0	ı	0	-	0	1	0	1	ns
Chip Disable to High-Z Output	t _{HZ}	0	4	0	5	0	6	0	7	ns
Output Disable to High- Z Output	tонz	0	4	0	5	0	6	0	7	ns
$\overline{\mathit{UB}}$, $\overline{\mathit{LB}}$ Disable to	tвнz	0	4	0	5	0	6	0	7	ns

9 **Rev. 7.0**

CS16FS1024(3//W)

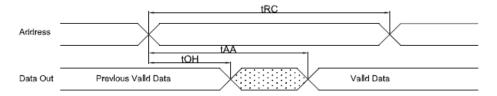
High-Z Output**										
Output Hold from	4	2		2		3		3		
Address Change	tон	3	-	3	-	3	-	3	-	ns
Chip Selection Power	4	0		0		0		0		
Up Time	t PU	0	-	0	-	U	-	U	-	ns
Chip Selection Power	too		0		10		12		15	no
Down Time	t _{PD}	-	8	-	10	-	12	-	15	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

Write Cycle*

Parameter	Symbol	8	ns	10	ns	12	ns	15	īns	Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Offic	
Write Cycle Time	twc	8	ı	10	ı	12	ı	15	-	ns	
Chip Select to End of Write	tcw	6	-	7	-	9	-	12	-	ns	
Address Set-up Time	tas	1.5	-	1.5	-	1.5	-	1.5	-	ns	
Address Valid to End of Write	t _{AW}	6	-	7	-	9	-	12	-	ns	
Write Pulse Width(\overline{OE} High)	twp	6	1	7	1	9	1	12	-	ns	
Write Pulse Width(\overline{OE} Low)	t _{WP1}	8	ı	10	ı	12	ı	15	-	ns	
$\overline{\textit{UB}}$, $\overline{\textit{LB}}$ Valid to End of Write**	t _{BW}	6	ı	7	ı	9	ı	12	-	ns	
Write Recovery Time	twR	1.5	ı	1.5	ı	1.5	ı	1.5	-	ns	
Write to Output High-Z	twnz	0	4	0	5	0	6	0	7	ns	
Data to Write Time	t _{DW}	4	-	5	-	7		8	-	ns	

10 **Rev. 7.0**

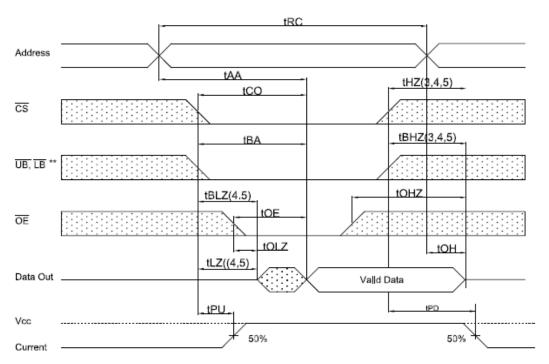

CS16FS1024(3//W)

Overlap										
Data Hold from	tou	0		0		0		0		20
Write Time	tрн	0	1	0	-	0	•	0	•	ns
End of Write to	4	9		3		3		3		20
Output Low-Z	tow	3	-	3	-	3	-	3	-	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

Timing Diagram

Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL} **)$

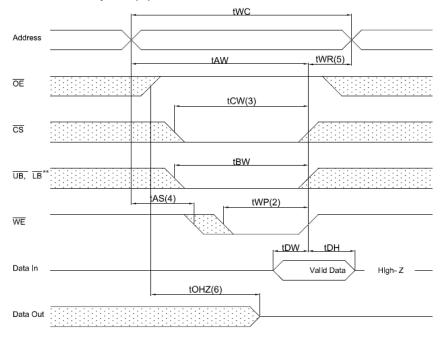

** Those parameters are applied for x16 mode only.

11 Rev. 7.0

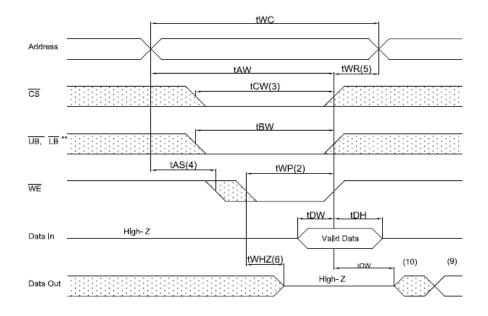
CS16FS1024(3//W)

Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

NOTES (Read Cycle)


- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $\overline{\it CS}$ =V_{IL}.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

12 **Rev. 7.0**


CS16FS1024(3//W)

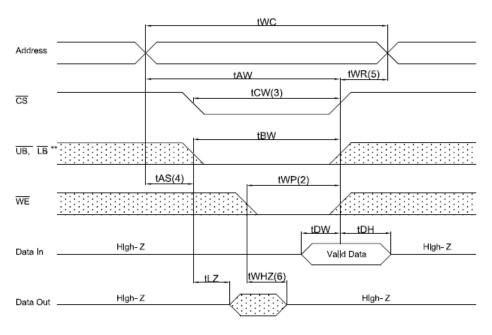
Timing Waveform of Write Cycle (1) (\overline{OE} Clock)

^{**} Those parameters are applied for x16 mode only.

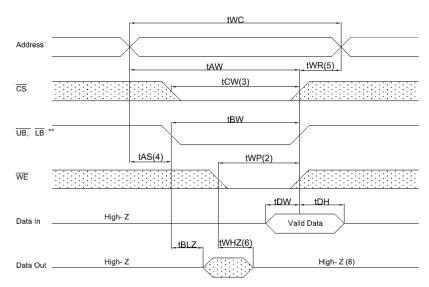
Timing Waveform of Write Cycle (2) (\overline{OE} =Low fixed)

^{**} Those parameters are applied for x16 mode only.

Rev. 7.0


Chiplus reserves the right to change product or specification after approving by customer.

13


CS16FS1024(3//W)

Timing Waveform of Write Cycle (3) (\overline{CS} =Controlled)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)

NOTES (Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CS} , \overline{WE} , \overline{LB} and \overline{UB} . A write begins at the latest transition

14 Rev. 7.0

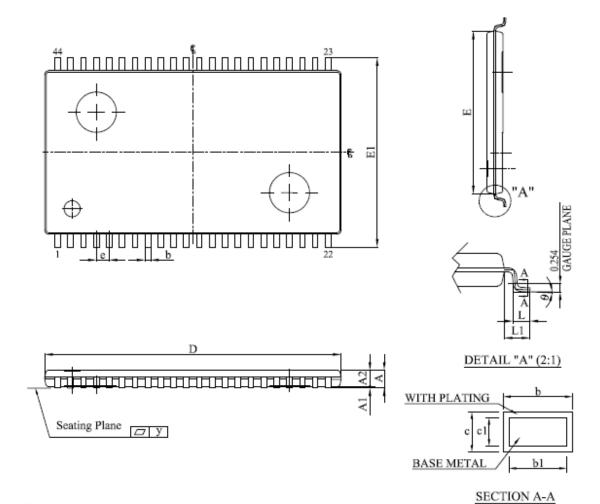
CS16FS1024(3//W)

CS going low and W	E going lov	ν;
----------------------	-------------	----

A write ends at the earliest transition CS going high or WE going high. t_{WP} is measured from the beginning of write to the end of write.

- 3. t_{CW} is measured from the later of CS going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. WE is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS or WE going high.
- 6. If OE, CS and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When CS is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

Package outline dimensions

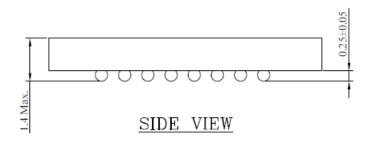

44L-TSOP2-400mil

15 **Rev. 7.0**

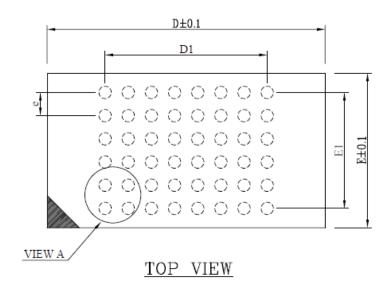
^{**} Those parameters are applied for x16 mode only

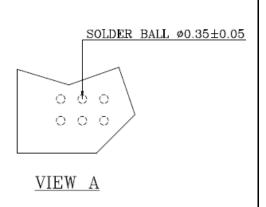
CS16FS1024(3//W)

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.


UNIT	MBOL	A	A1	A2	b	ы	с	c1	D	Е	E1	e	L	L1	у	Θ
	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	1	0°
mm	Nom.	1.10	0.10	1.00	-	-	-	ı	18.41	10.16	11.76	0.80	0.50	0.80	_	ı
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	1	0°
inch	Nom.	0.0433	0.004	0.039	1	-	-	ı	0.725	0.400	0.463	0.0315	0.0197	0.0315	_	-
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)


16 **Rev. 7.0**



CS16FS1024(3//W)

BALL PITCH e = 0.75										
D	E	N	D1	E1						
8.0	6.0	48	5.25	3.75						

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL "N" IS THE NUMBER OF SOLDER BALLS.

17 **Rev. 7.0**